当前位置: 节能环保网 » 水处理 » 市政污水 » 正文

污水处理生态滤床工艺研究

日期:2017-06-14    来源:中国污水处理工程网

国际节能环保网

2017
06/14
10:42
文章二维码

手机扫码看新闻

关键词: 污水处理 生态滤床 水处理

近年来,随着全球水资源污染日趋加重,越来越多的污水处理厂投入建设,关于污水处理的研究也日渐增多,人工湿地 及生物滤池便是目前广泛应用于污水处理的工艺;但是人工湿地技术的废水处理效率低且易堵塞 ,而生物滤池技术在之前的应用中发现传质效果欠佳,导致净水效果差且所挂生物膜易脱落 ,因此探究新型填料及高效的挂膜工艺已成为当今研究人员共同的目标。

目前,关于新型填料及挂膜工艺的报道逐渐增多。马兴元等研究了以轻质陶粒为滤料的生态滤床工艺,CHENG 等 利用涂料厂污泥及石英制备烧结陶粒,并研究了一种磁改性的方法对陶粒改性,发现磁改性后滤料对水质处理效果提升,BAO 等利用木屑及坡缕石制备烧结陶粒并利用针铁矿进行磁改性,得到的滤料应用于BAF 装置中来处理污水,发现当针铁矿、木屑及坡缕石的比例为10 ∶ 2 ∶ 5 时,滤料处理污水效果最佳。当广大研究者对新型滤料的研究主要集中于自制烧结陶粒或对市售烧结陶粒表面改性时,却忽视了烧结法对煤资源的大量消耗,排放大量二氧化碳和扬尘而造成霾。此外,一部分关于生物滤池的研究也忽略了运行温度对微生物活性的影响。

疏浚底泥是河道疏浚的废弃物,我国进行的一些大型湖泊的环保疏浚工程,每年将产生大量的底泥 。底泥脱水耗时长,并且其中的污染物会造成二次污染,严重影响其资源化利用。若能利用疏浚底泥免烧陶粒作为填料,不仅消耗了大量无法处理的疏浚底泥,达到资源化利用效果,且免烧法能够节约能源,减少温室气体的排放,同时也减少了黏土陶粒等滤料的使用,保护了黏土等资源。

本文利用免烧工艺将疏浚底泥制备成免烧陶粒,并对免烧陶粒进行磁改性 ,比较不同填料对原水处理效果及最佳运行温度。为湖泊底泥的资源化利用提供依据。

1材料与方法

1. 1 材料

主要实验仪器:SKD-2000 全自动凯氏定氮仪、SXKW 数显控温电热套、电热恒温鼓风干燥机、SHZ-DⅢ循环水真空泵、压力锅(1. 1 ~ 1. 4 kg˙cm - 2 )、UV759 紫外-可见分光光度计、HK-2A 超级恒温水浴、分析天平。

主要实验药品:重铬酸钾、邻菲啰啉、硫酸亚铁、硫酸亚铁铵、硫酸、硫酸银、硫酸汞、NaOH、硼酸、甲基红、溴甲酚绿、95% 乙醇、硝酸、高氯酸、过硫酸钾、抗坏血酸、钼酸铵、酒石酸锑钾、酚酞,上述药品均为分析纯。

疏浚底泥为渤海疏浚所得,造粒时含水率48. 2% ,有机质9. 1% ,pH 6. 8,密度1. 407 g˙cm - 3 ,孔隙率28. 9% ;水泥、粉煤灰及水玻璃均为普通市售产品;商品烧结陶粒购于天津武清区彤上轻质建材厂。

1. 2 陶粒制备及磁改性工艺流程

1. 2. 1 疏浚底泥免烧陶粒制备工艺

图1 是疏浚底泥制备免烧陶粒的工艺流程图。原料采用固定配比:疏浚底泥80% ,水泥3% ,粉煤灰5% ,外加剂A6% ,外加剂B6% 。将块状底泥破碎后与水泥、粉煤灰和外加剂A 混合,将混合料加入圆盘造粒机中,喷洒外加剂B 与水的混合液进行造粒20 min,所得陶粒经裹壳处理得到疏浚底泥免烧陶粒(DSUC)。裹壳处理步骤为:原料配比为陶粒70% ,水泥21. 6% ,生石灰1. 5% ,粉煤灰3. 9% ,外加剂C3. 0% 。将陶粒与壳料加入造粒机,喷洒外加剂C 的水溶液,外加剂C 与水混合比例为1 ∶ 25。造粒盘持续转动15 min 裹壳完毕。

1. 2. 2 免烧陶粒磁改性工艺

图2 是免烧陶粒磁改性工艺流程图。目前此类滤料的表面改性的方法主要是沉淀法和高温加热二次灼烧法2 种。本工艺在沉淀法的基础上,利用水玻璃浸泡,使陶粒表层的Fe3 O4 与陶粒表层粘合更牢固。

将24 g 硫酸亚铁与35. 4 g 三氯化铁分别溶于100 mL 水中并相互混合,置于磁力搅拌机中加热至70 ℃ 并搅拌30 min 得到Fe3 O4 溶液。将100 g 陶粒置于加热的磁性Fe3 O4 溶液中搅拌,进行浸渍涂层。涂层后对陶粒烘干并进行重复涂层,涂覆次数为5 次。所得陶粒浸泡入100 g 水玻璃中5 min 后,于105 ℃ 烘干,得到磁改性免烧陶粒(MUC)。

1. 3 生物陶粒过滤器

生物陶粒过滤器(biological ceramsite filter,BCF)的尺寸为高320 mm,直径32 mm,由玻璃制成,采用下进上出的方式进水,调节温度的循环水由下进上出,取样处及测温处均在上出水口。采用高位水槽形成的压差对BCF 进行供水,调整入水口大小来控制进水速度,通过1 台循环水浴对BCF 内的原水进行调温。

BCF 中填入直径为22 mm 的铁石筛网作为承托层。铁石筛网分布于装置的入水及出水口55 mm处,陶粒填料层高为210 mm。筛网不仅可以作为承托层来防止陶粒由于水流冲刷堵塞入水及出水口,还能够对水流进行分流,与陶粒接触均匀,使挂膜更完全。BCF 过滤器如图3 所示。

1.3

1. 4 原水水质

BCF 的进水取自天津科技大学(TUST)人工湖,学校人工湖湖水参数如表1 所示。

1. 5 探究不同温度下BCF 对原水处理效果

BCF 运行方式为连续进水,每天运行9 h(09:00—18:00)。拟定BCF 原水流速为0. 07 mL˙s - 1 ,其中装有35 g 疏浚底泥免烧陶粒,通过恒温水浴回流来调节BCF 中原水的温度,使得温度为20、30 及40 ℃ 。

每天采集出水水样,测试其COD、NH3 -N、SS 及TP,实验过程持续25 d。检测各项指标去除率,得出去除效果最优时的实验温度。

COD 采用GB 11914-1989 规定的重铬酸盐法测定,NH3 -N 采用凯氏定氮仪法测定,SS 采用GB 11901-1989 规定的重量法测定,TP 采用GB 11893-1989 规定的钼锑抗分光光度法测定,浊度采用WGZ-500B 型浊度计测定。

1. 6 探究不同滤料对原水的处理效果

采用DSUC、MUC 及CSC 作为BCF 的滤料,在最优温度下连续进水运行,每天运行9 h(09:00—18:00)。每天采集出水水样,测试其COD、NH3 -N、SS 及TP,实验过程持续25 d。检测各项指标去除率,比较3 类陶粒对原水的处理效果。

2 结果与分析

2. 1 陶粒滤料基本物理性质

陶粒滤料外观形貌如图4 所示,可以看出DSUC 与CSC 颗粒大小均匀,MUC 颗粒不规则,三者颜色有明显差异。陶粒滤料基本性能如表2 所示,可以看出3 种陶粒的粒径及堆积密度均处于同一数量级,DSUC 与MUC 的筒压强度相同为5. 00 MPa,单颗强度MUC 提高了1. 2% ,而CSC 较DSUC 筒压强度提高34. 0% ,单颗强度提高61. 8% ,主要原因是烧结过程能使陶粒更为致密,强度较免烧陶粒更高,而本文所制备的DSUC 筒压强度为CSC 的74. 6% ,单颗强度的61. 8% ,与烧结陶粒相差较小,陶粒单颗强度为随机取样30 颗所测值的平均值。MUC 和CSC 由于表面孔隙更多使得吸水率大于DSUC,MUC 经过磁改性而使表面有弱磁性;但其表层为涂覆材料,因此在水流冲刷和搅拌时更易脱落,质量损失率高于DSUC 与CSC,而DSUC 的水流冲刷和搅拌时质量损失率较CSC 分别增加了0. 8% 和14. 3% 。

2. 2 DSUC 在不同温度下对原水处理效果

2. 2. 1 对COD 的去除效果

2.1

图5 是DSUC 在不同温度下COD 的去除情况。

可以看出,前8 d 陶粒在不同温度下对COD 的去除率均小于28% ,这是由于陶粒表面的微生物处于生长期,其表面的生物膜不成熟且微生物含量少,对COD 去除率低,此时COD 的去除主要依靠陶粒表面的多孔结构而具有的吸附能力。

在第9 ~ 20 天时,COD 去除率显著提高,在30℃ 时,COD 去除率优于20 ℃ 与40 ℃ ,在第20 天时达到54. 2% , 而在20 ℃ 及40 ℃ 时为48. 9% 和41. 5% 。说明30 ℃ 更适合微生物的繁殖,在此温度下,微生物降解有机物的能力高于20 ℃ 和40 ℃ 。

2017-06-14_104530
2017-06-14_104626

返回 国际节能环保网 首页

能源资讯一手掌握,关注 "国际能源网" 微信公众号

看资讯 / 读政策 / 找项目 / 推品牌 / 卖产品 / 招投标 / 招代理 / 发新闻

扫码关注

0条 [查看全部]   相关评论

国际能源网站群

国际能源网 国际新能源网 国际太阳能光伏网 国际电力网 国际风电网 国际储能网 国际氢能网 国际充换电网 国际节能环保网 国际煤炭网 国际石油网 国际燃气网